Lifelong Incremental Reinforcement Learning With Online Bayesian Inference
نویسندگان
چکیده
منابع مشابه
Incremental Stochastic Factorization for Online Reinforcement Learning
A construct that has been receiving attention recently in reinforcement learning is stochastic factorization (SF), a particular case of non-negative factorization (NMF) in which the matrices involved are stochastic. The idea is to use SF to approximate the transition matrices of a Markov decision process (MDP). This is useful for two reasons. First, learning the factors of the SF instead of the...
متن کاملMAP Inference for Bayesian Inverse Reinforcement Learning
The difficulty in inverse reinforcement learning (IRL) arises in choosing the best reward function since there are typically an infinite number of reward functions that yield the given behaviour data as optimal. Using a Bayesian framework, we address this challenge by using the maximum a posteriori (MAP) estimation for the reward function, and show that most of the previous IRL algorithms can b...
متن کاملScalable lifelong reinforcement learning
Lifelong reinforcement learning provides a successful framework for agents to learn multiple consecutive tasks sequentially. Current methods, however, suffer from scalability issues when the agent has to solve a large number of tasks. In this paper, we remedy the above drawbacks and propose a novel scalable technique for lifelong reinforcement learning. We derive an algorithm which assumes the ...
متن کاملBayesian Reinforcement Learning with Exploration
We consider a general reinforcement learning problem and show that carefully combining the Bayesian optimal policy and an exploring policy leads to minimax sample-complexity bounds in a very general class of (history-based) environments. We also prove lower bounds and show that the new algorithm displays adaptive behaviour when the environment is easier than worst-case.
متن کاملOnline Testing with Reinforcement Learning
Online testing is a practical technique where test derivation and test execution are combined into a single algorithm. In this paper we describe a new online testing algorithm that optimizes the choice of test actions using Reinforcement Learning (RL) techniques. This provides an advantage in covering system behaviors in less time than with a purely random choice of test actions. Online testing...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Transactions on Neural Networks and Learning Systems
سال: 2021
ISSN: 2162-237X,2162-2388
DOI: 10.1109/tnnls.2021.3055499